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Abltnd-Analytical solutions are derived for the static response of two elastic cable systems under the
action of distributed and concentrated vertical loadings. The first system is a aeneral cable truss with an
arbitrary number of vertical spacers, the second a highly symmetric 2x2 cable network. The analysis of
both features a pair of lagrangian coordinates, one associated with the strained profile and the,other with
the unstrained profile. Cable tensions and positions in the strained state are represented as fUD<:tions of the
latter. Aspecific application of these functions is made for each system.

INTRODUCTION
The increasing structural use of cable systems-both networks and trusses-has given rise to a
substantial technical literature concerning their static response, as is indicated by the report of
the Subcommittee on Cable-Suspended Structures of the ASCE[l]. Largely because of the
complexity of these systems the greater part of this literature is concerned with numerical
approaches to the problem and in particular with finite-element methods (see, e.g. [2J). The
relatively few analytical contributions have been approximate in nature, typically replacing the
cable network or truss with an equivalent membrane (see [3-5J and the references contained
therein). The distinguishing feature of this paper'is that it proceeds from a natural formulation
of an actual cable system and establishes analytical representations of its response without
recourse to further simplifications-in this sense the work presented may be considered to be
exact.

Determining exact solutions for elastic cable systems is a class of problems of some
antiquity. Circa 1890, Routh[6] derived the solution for the static response of a single elastic
cable under the action of self-weight alone-the so-called elastic catenary. Feld [7J generalized
Routh's analysis to the unsymmetrically suspended case while Schleicher[8J treated the
symmetric .elastic cable with a concentrated load at its mid-point. More recently Irvine and
Sinclair[9J furnished the solution for the unsymmetrically suspended elastic cable subjected to
any number of concentrated loads: here in essence we extend the approach adopted in [9J and
apply it to two cable systems.

The first system is an elastic cable truss comprised of two cables anchored at their ends to
rigid supports and separated by any number of vertical bars which may be arbitrarily spaced
horizontally. Loading of the truss is provided by the cable and bar self-weights, by distributed
vertical loads along the cables, and by any number of concentrated vertical forces which may
act anywhere along the upper cable. The forces within the cable truss and the associated
displacements under such loadings are sought. This is a general problem of some practical
significance.

In formulating the cable truss problem in Section 1, two lagrangian coordinates are used for
each cable, one being the length of cable between a support and some particle point in the
unstrained profile while the other is the corresponding length in the strained profile. Analytical
expressions are then derived which give the forces within the truss and the rectangular
coordinates describing the strained profile as functions of the lagrangian coordinate associated
with the unstrained profile. These expressions contain unknowns; more precisely, for a cable
truss with N spacer bars there are 4(N +1) unknowns. With a judicious choice of boundary
conditions in the formulation, the associated 4(N + 1) x4(N +1) set of equations decouples
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enabling the solution to be found readily, as demonstrated at the end of Section 1by an analysis of
an example entailing four spacer bars wherein the actual computations are performed on the
ubiquitous pocket calculator.

The second cable system considered is a cable network. Here, however, the application of
the approach used for the cable truss to a large N x N network may give rise to a set of
2N x 2N equations without any decoupling. Consequently in Section 2 attention is confined to a
simple symmetric 2x 2 network which only requires that a pair of transcendental equations be
solved simultaneously. The value of such a solution is expected to lie in checking more
powerful, finite-element methods and in appraising their discretization errors. To this end the
paper concludes with an application which affords a comparison with a finite-element analysis.

I. CABLE TRUSS

In formulating the cable truss problem we first consider the truss geometry and the
coordinate systems required (Fig. 1). The cable truss consists of an upper cable attached at two
fixed points Po and PN+(, a lower cable attached at Po and PN+(, and a set of N vertical bars
connected to the upper cable at Pn and the lower cable at P~ (n = 1,2, ... ,N).t We let Rn(R~)
refer to the cable segment contained within the points Pn, Pn+I(P~, P~+I)' Two plane, rec
tangular, cartesian, coordinate systems which share a common origin at Po are used to describe
the truss in the strained profile (i.e. when fully loaded). With respect to these systems a point P
on the upper cable has coordinates (x, y), Po coordinates (0,0), Pncoordinates (xn, Yn) and PN+1

coordinates (/, YN+I); a point P' on the lower cable has coordinates (x', y'), Po coordinates
(0, ho), P~ coordinates (xn, Yn +hn) and PN+1 coordinates (/, YN+I +hN+I). Thus I is the cable
truss span, ho and hN+1 the vertical separations of the supports at the truss ends, and hn the
length of the bars. Central to our analysis of this elastic cable system is the introduction of two
further pairs of coordinates: for P on the upper cable these are the lagrangian coordinates (P, s)
where p is the length of cable between Po and P in the strained profile, s the length of cable in
the unstrained profile; for P' on the lower cable, these are the lagrangian coordinates (p', S')
defined analogously. With respect to these last systems Po has coordinates (0,0), Pn coordinates
(Pn, sn) and PN+1 coordinates (ft, L); Po, P~, PN+1 the primed counterparts. Thus ft and L (ft'
and L') are the total upper (lower) cable lengths in the strained and unstrained states,
respectively. Now since the cartesian coordinates and two of the lagrangian coordinates all
refer to cables in strained profile the following relationships between the coordinate systems

Po t....::::...-_-!--- x , x·

P~ P3

P(x,y;p)
' ..

P;
. . . Pi.

Fig. 1. Coordinates for the strained cable truss.

tThroughout we employ a prime to distinguish quantities associated with the lower cable from those with the upper
cable.



must hold: for the upper cable,
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(dX)2 +(~)2 =1
dp dp ,
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(1.1)

on (n =0,1, ... ,N), Rn, and for the lower cable a like relationship wherein the quantities are
primed.

We next turn to the equilibrium requirements for the truss under the action of weight
loading, distributed loading and concentrated vertical loads, focusing initially on the upper
cable. We restrict distributed loadings to those which are uniform with respect to the cable
length in the unstrained profile and can therefore be combined with the weight of the cable
itself; accordingly we term w the effective self-weight of the upper cable per unit length (s) and
let it incorporate both types of loading. Without loss of generality we assume the vertical
concentrated loads Fn are applied coincident with the bars and that the portion of each load
carried by the upper cable is In (positive in the y-direction) the remainder being transferred to
the bars.t At the support Po a vertical reaction, 10' is induced by these loads and acts in
conjunction with an applied horizontal tension H (/0 and H being positive in the yo, x
directions). At any point P the tension force within the cable is T. Hence resolving the forces
acting on a segment of the cable between Po and P horizontally and vertically gives

(1.2)

on Rn• Analogously one arrives at a pair of equilibrium requirements for the lower cable which
are the same as (1.2) except that all the terms are primed. Equilibrium of the bars further
requires that

(103)

for n =1,2, ... ;N, where liin is the bar weight per unit strained length.
In establishing constitutive relations for the cable comprising the truss we assume: the only

stresses present are axial and tensile and are uniformly distributed across a section of a cable
(that is, the cables are flexible), and the strains are infinitesimal. Then from the theory of
elasticity we have, for the upper cable,

T =EA (!!e.-I)ds ' (1.4)

on Rn, where E is the modulus of elasticity of the upper cable and A its cross-sectional area in
the unstrained profile (both constant), with, again, the attendant relation for the lower cable
being obtained by merely inserting primes in (1.4).

To complete our'formulation we state the various boundary conditions that are assumed to
apply to the truss. The end conditions which hold at the rigid cable supports are

x =y =0 at Po, x = I, y = YN+I at PN+(,

x'=O,y'=ho at Po,x'=1 at P"Hh (1.5)

I, YN+I and ho being given. The matching conditions which ensure continuity of the cables at the

tWithoutloss ofgenerality because if aconcentrated load is applied where there is no actual bar we regard the "bar" there as
being imaJinarY and take F~ = I~. and if no concentrated load acts at agiven bar we make I. equivalent to the reaction of the bar
on the cable and set F. =O.
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x~ =x~, y~ =y~ at p., (1.6)

for n =1,2, ... ,N, where x~ =lim x(s. - E), E> 0, etc. with a like set of conditions for the
.~

lower cable. The horizontal spacing of the bars is assumed to be prescribed; thus

x =x. at p., x' =x. at P~, (1.7)

for n = 1,2, ... ,N, with x. given. The "roof" conditions reflect the fact that typically the
structure supported by the truss determines the profile of the upper cable; assuming that there
are a sufficient number of points p. to characterize the desired shape we take these as being

Y= Y. at p., (1.8)

for n = 1,2, ... ,N with Y. given.t Finally, we take the vertical reaction at Po, 10' to be given.
This last is in lieu of the more natural condition which sets the vertical coordinate of the
support at PN+1; we postpone further examination of this exchange until the solution procedure
for the truss has been developed.

Observe that anyone of the coordinates x, y, p or s (x', y', p' or s') may serve as the single
independent variable required for a solution for the upper (lower) cable. Implicit in the
preceding formulation is the choice of s(s') as this variable: we choose s(s') since it gives rise
to a solution that is readily applied. Accordingly we now seek the cable tensions and the
rectangular coordinates of the strained cables as functions of s(s'). First the tensions.

Squaring the equations in (1.2) and adding the resulting expressions using (lJ) immediately
provides, as the solution for the tension in the upper cable,

(1.9)

on R•. Similarly the tension in the lower cable is given by (1.9) primed.
Next we treat the horizontal coordinate of the strained upper cable, x. With a view to

obtaining a solution of the form x = x(s), we initially seek an expression for dx/ds. Noting that
dx/ds = (dx/dp)(dp/ds) and using the first of (1.2), together with (1.4), we obtain dx/ds in terms
of T. Substituting for T from (1.9) yields an expression which may readily be integrated. The
constants of integration so produced can be evaluated using the first of the end conditions in
(1.5) and the first set of matching conditions in (1.6) so that one has, as the solution for the
horizontal coordinate of the upper cable,

x(s) = cs + w-I [sinh-I ('iJi +ws) +t {Sinh-I (± !i-I +WSi)
.=0 .=0 }=1

- sinh-I (~h +WSi) }], (1.10)

on R., where e=H/EA, W= w/H, l =li/H, with the understanding that no contributions result
from summations if the upper limit is less than the lower and that So = O.

A similar procedure yields the vertical coordinate of the strained upper cable,

y(s) = - es(f~ + ws/2) + w-I [v(f02 + 1) - ~((± Ii +WS)2 +1) +±{eW!;(Si - s)
1=0 .=1

(1.11)

tlndeed we can always ensure there are sufficient p. by inserting additional imaginary bars/loads <F. =f. =0).
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on RAt Inserting primes in (1.10), (1.11) and adding ho to the latter furnishes the expressions for
the rectangular coordinates of the strained lower cable and completes our solution represen·
tations.

The results in (1.10), (1.11) and their primed companions contain a number of unknowns.
For the upper cable these are the cable lengths SMI and the forces f,. (n == 0, 1, ... .N;
SN+I = L); for the lower cable, the cable lengths s~+\ and the vertical separations h,.+1

(n =0,1 .... ,N; SN+I =L'). To determine these 4(N +1) unknowns we have available the
3(N +1) conditions remaining to be satisfied in (1.5), (1.1), (1.8) together with the (N +1)
requirements that Y~+I =YIIH +hll+1 (n == 0,1, ... ,N). Moreover, as a result of the selection of
the boundary conditions in the formulation, the entire equation system decouples into (N + 1)
2x 2 sets for SII+h fll of the upper cable, (N +1) single equations for s~+\ of the lower cable,
and (N +1) direct expressions for h1t+I' Explicitly, if €=wsn+\IH, 11 = /JH, then substituting
(1.10), (1.11) into the outstanding end conditions for the upper cable in (1.5), the first of (1.7),
and the roof conditions (1.8), gives, as the equations for the determination of Eand 11,

et+sinh-I <t +11 +cl)-sinh-\ (." +C2) == Ch e[E(~2+." +Cl)+ ",(C2- C3)]

+v'(U +." + C\)2 + 1) - \1'«." + C2)2 +I) = c., (1.12)

where

for n = 0, It ... •N. XN+I == 1: if ~/ == w's'n+\IH, ,,/ == w/hll+\IH, then substituting (1.10)/, (1.11)/
into the outstanding end condition for the lower cable in (1.5), the second of (1.1) and the
requirements that Y~+l == YII+I +hn+h gives, as the equations for the determination of ,'.

where

II ..

ci =~ fi.
t-1

C'~' +sinh-\ (t +cJ) = c~, (1.13)

and C't w',li are the primed counterparts of C, w,h, for n == 0,1, ... ,N, XN+I =I, together with a
set of (N +1) expressions for .,,/ in terms of known quantities once (1.12), (1.13) are solved.
Although some of the equations in (1.12), (1.13) are transcendental and the remainder are
nonlinear algebraic, their numerical solution is straightforward and we demonstrate this next by
analyzing a simple sample truss.

The sample cable truss is a symmetric convex arrangement having four vertical supporting
bars and a central tension ring (Fig. 2). The cables themselves are highly tensioned so as to
support a parabolic shaped roof which exerts a distributed loading along the upper cable
(incorporated into the effective self·weight w). Additional loading is provided by the weight of
the cables, the supporting bars and the tension ring, this last acting like a concentrated load at
the center of the truss. The symmetry of the configuration enables the analysis to be confined to
the first half of the truss alone and the numerical values prescribing this portion are given in the
first two columns of Table L

The associated equations to be solved stem from (1.12), (1.13) on inserting the values from
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Fig. 2. Sample cable truss.

Table I. Data and solution values for the sample cable truss

Truss ieometry Truss loa,hna/stlffness lin. trained upper and Vertical support reaction,
lower c3ble 1enlths bar forces/len,ths

"'I • 10 '" • 800 'I • 10.30 f o • 20.90

"'2 • 20 1J'-u-17 '2 • 20.40 f
1

• -18.16

"'J • 30 H • 100 'J • 30.44 !z • ·13.06

!II • -2.5 H' • 178 Bj • 10.31 hI • 5.09

!/2 ••4.0 P
J

.O.25 a2• 20.40 h
2

• 8.15

!lJ - ·5.0 EA • 75000 'j • 30.41 hJ - 9.96

Note: "'I,!li,e i ,'i,\ (i-I,2,3) in feet; ",,"",w in lb/ft; 8,H','J,EA"i (i-O,I,2) in Ups.

Table 1. The order of solution is to proceed along the upper cable solving (1.12) for (s"fo), then
(s2,fl), then (s3,h). With these values determined the solution for (si, hI) can be addressed. For
this symmetric truss, however, we need at this point to determine a value of the vertical support
reaction acting on the lower cable such that the overall symmetry of the truss is preserved (see
our formulation of the general truss problem wherein this reaction is presumed given). Thus we
take /0 == - [fo + F) + WS3 + w's) + w(h l +h2»), since though the precise values of s), hI and h2

are not yet known, for this truss the weight forces generated by these terms are small in
comparison with the external loading so that estimates of these missing values serve
adequately. (While this is typically the case, in instances where it is not the solution of the
equation system for the lower cable can be performed iteratively). With 10 evaluated, (si, hi),
(si, h2) and (s), h) are determined in turn.

A suitable approach for the actual determination of the solution in the order outlined is to
use a two-dimensional Newton-Raphson method for the equation pairs arising from (1.12)
coupled with a simple Newton-Raphson method for the equations from (1.13). Since the sample
truss here is very taut (as is often the case in practice), a viable set of initial estimates can be
obtained by rendering the truss weightless and rigid, applying a statically equivalent set of
con,centrated loads at the bars, then solving analytically. This procedure furnishes good initial
estimates for the cable and bar lengths, no equation or equation pair taking more than three
iterations to converge to four significant figures. Further, the entire process proved simple
enough to be readily carried out on an HP 29C programmable calculator. The results are shown
in the last two columns of Table 1.

The cable and bar lengths in Table 1enable the truss to be "layed-out" prior to erection. The
forces in Table 1 allow one to check against buckling, given the bar cross-sections (the minus
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signs indicate compression). All the values in Table 1 can be introduced into (1.10), (1.11) and
their primed counterparts to enable the calculation of the strained profile and this is the profile
drawn in Fig. 2. In the figure the small deviations from perfectly straight cable segments are
consistent with the hiatt tension in our sample truss.

It is now appropriate to review the use of the prescribed vertical support reaction instead of
a condition which more directly reflects the desired shape for the truss, in particular the shape
of the strained lower cable. For symmetric trusses the "preset" value must be adjusted
(possible iteratively) to ensure that it equals the other vertical reaction at PN+I-in as much as
this value then leads to a symmetric truss its "prescription" does shape the profile. For
asymmetric trusses the advantage of fixing the vertical support reaction lies solely in the
decoupling of the transcendental equations for the lower cable (see (1.13». Nonetheless, if it is
required to prescribe, say, the vertical separation of PN +h PN+h then a shooting iterative
scheme can be adopted. In general this may prove to be a slowly converging process: in
actuality, for taut cable trusses, such good estimates of the right 10 can be found that few
iterations are needed. Moreover this approach can be extended with the gross characteristics of
the complete shape of the lower cable being set and both the vertical reaction 10 and the tension
H' at Po being iteratively tuned to achieve this profile.

To conclude our truss analysis some generalizations and shortcomings of the approach used
bear commenting upon

-To model varying distributed loads, W can simply be made a piece-wise constant function,
W =Wft on Rft •

-To determine the response to additional loading (1.12) can be solved with Xft and Sft now
given, and Yft and 1ft as unknowns, provided the deflections are sufficiently small to be assumed
vertical. However, if the added loads are large, the forces and deflections no longer remain
vertical and a major generalization of our formulation to include inclined forces must be made.

2. CABLE NETWORK

In formulating the cable network problem we first consider the network geometry and the
coordinate systems required (Fig. 3t). The cable network consists of four cables, joined at four
intersection points Ph Pz,P3, P4, with each cable attached to two fixed points at the same level,
Ps,P6, ••• ,P1Z' The strained profile of the network is described by a rectangular, cartesian,
coordinate system with origin Po, y-axis positive in the downward vertical direction and a
horizontal xz-plane. With respect to this system a point P on the strained profile has
coordinates (x, y, z), Po coordinates (0,0,0), Ps coordinates (a, 0, 0), P6 coordinates (I-a, 0, 0),
etc. Thus a is the horizontal distance between a support and whichever of the lines x = 0 or
I, z =0 or I is closest and I is the common cable span.

When fully loaded the network is subject to the cable self-weights, uniform distributed loads
and four equal, vertical, concentrated forces applied at its intersections. Under this loading it
has a high degree of symmetry. The broken lines at x =1/2 and z =1/2 in Fig. 3. are both lines of
symmetry. In addition the cable segments P12P1PI3 and PSP.PI4 are equivalent: for instance, the
deflected positions of points on segment PI2P.P13 relative to the x-axis are the same as those
for corresponding points on segment PSP1PI4 relative to the z-azis. Hence to analyze the
complete network it suffices to consider only one-half of a single cable. For convenience we
choose the segment PIZPIPI3 in Fig. 3 and let R. and Rz refer to the cable subsegments
contained within the points P12, PI and Ph P13, respectively. As in Section 1 we introduce the
two lagranaian coordinates p and S for a point P on this segment. With respect to the latter PI
is located at S =b, P13 at S =U2; thus L is the total unstrained length of a cable. Similarly to
Section 1 we have the following relationship between the coordinates describing the strained
cable segment:

on R. (n =1,2).

(dX)2 +(~)2+ (dz)2 = 1
dp dp dp , (2.1)

tFor clarity, the network depicted in Fig. 3is orthogonal in plan though and analysis is not limited to this rather special case.
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Fig. 3. Coordinates for the strained cable network: (a) Plan, (b) Elevation.

We now consider the equilibrium requirements for the selected cable segment and initially
take the point P to lie in Region 1. We let F be the concentrated force applied downwards at
Ph Hx, Hz be the horizontal support reactions parallel to the X-, z·axes and T be the axial cable
tension at P. Resolving in each rectangular coordinate direction and using the fact that the
vertical reaction must equal (W +F)/2 by symmetry then gives, for Region 1,

dx dy W+F dzT-=H T-=---ws T-=-Hdp x' dp 2 'dp z'
(2.2)

where w is the specific effective weight (effective weight per unit length s). On using the
symmetries in the network, a similar procedure applied in Region 2 leads to

dx dy W dzT-=H -H T-=-- ws, T-=O.dp x .. dp 2 dp (2.3)

The constitutive relation for the cable segment remains the same as in Section 1, namely as
in (1.4).

To complete our formulation we state the boundary conditions that apply to the network
segment. The end conditions which hold at the rigid support are

x = y = 0, z = a at P12• (2.4)

The matching conditions which ensure continuity of the cable segment at the intersection point
are

XI=X~'YI=y~,ZI=Z~ at Plo (2.5)

where the minus and plus signs denote limits from Regions 1 and 2 respectively. Finally we
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have the conditions imposed by the symmetry of the network. The end-point P13 of the cable
segment must lie on the line of symmetry at x =1/2 after loading. Further, the intersection PI
must be on the line z=x, a line of symmetry not indicated in Fig. 3. Thus the two symmetry
conditions are

x=I/2 at P13,x=y at PI' (2.6)

Solutions for the cable segment tension and rectangular coordinates as functions of the
lagrangian coordinate associated with the unstrained profile, S, follow in a completely analogous
manner to those derived in Section 1. We therefore merely list the pertinent expressions here:
the tensions are

in Regions 1,2 respectively, where H =y(Hx
2+H,2), the resultant horizontal support reaction

at P12 ; the rectangular coordinates of the strained cable segment in Region I are given by

xeS) = cxs +wx- I [sinh- t W - sinh-I (W - wS)),

yes) =CS(W - ws)+ W-I [y(l +W2)+y(l +(W - WS)2)], (2.8)

z(s) =a - czS - w,-t [sinh-1 W- sinh-1 (W - wS)],

with analogous expressions for Region 2, suppressed here in the interests of brevitY,t where
Cx =HlEA, C, =HJEA, W.. = W/H.., W, =W/H" W=(W +F)/2H. Equations (2.8) contain
unknowns. For the present formulation these are the horizontal support reactions H.. and Hz,
and we now insist on the satisfaction of the two symmetry conditions to generate a pair of
simultaneous transcendental equations for their determination

1- c..L-2w~1 [sinh-I W -sinh-I(W - wb)]+ cAL -2b)

- (w..- t - W,-I) sinh-I (L - 2b)/2(w..- 1 - wz- I) =0,

a -(c.. +cz)b -(w..- I +wz- I) [sinh- t W -sinh-I (W - wb)] =0.

(2.9)

We next demonstrate how (2.9) can be solved for a specific example which may then be used to
check a finite-element solution and appraise its discretization error.

As a direct check on the finite-element method developed by Saafan [2], we consider the
network described in Example 2 of [2] wherein the loading consists of concentrated forces
alone. The parameters for this network are: 1=300, a =100, L =308.2, b =104.2 (in feet);
F =8, EA =2724 (in kips). To check for complete agreement of Saafan's work with the
analytical solution, we must render our network weightless and let W-+ 0 in (2.8H2.9). With
this done we solve for H.. and Hz with a two-dimensional Newton-Raphson method (to obtain
reasonable initial estimates of H.., Hz we assume that the cable material is rigid and let EA -+ 00)
to establish H.. =12.69 (kips), Hz =0.01681 (kips). Equation (2.8) then gives the coordinates of
the intersection as x(b) = 99.87 (ft), y(b) =31.47 (ft). This deflected position is identical with
that found by Saafan if one takes into account an initial position assumed in [2].

In order to demonstrate the evaluation of the analytical solution for a heavy cable network
or a cable network under uniform distributed loading, and to estimate the discretization error in
Saafan's tinite-element method, we now reconsider the network defined by the parameters
given in the previous paragraph with the total load divided between the concentrated forces and
the cable effective weights. Hence we must solve the full set of equations in (2.9) to determine
the unknown horizontal reactions and again we do this with a two-dimensional Newton
Raphson rule. The values thus found for Hx and Hy with various load distributions are
exhibited in Table 2 (Col. 3,4) together with the coordinates of a loaded intersection drawn
from (2.8) (Cols. 5, 6).

tSee [10] for details.
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Table 2. Network response under varyina load distributions

Load Values fro. exact analysis Values fraa finlte-el_nt analysis
distributlon

:t(-.J II :t(-.J !I
F Ii H", H at PI at PI B H at PI at PIa '" •

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

7 1 12.20 0.01487 99.88 31.36 12.20 0.Ol503 99.8. 31.37

6 2 11.71 0.01266 99.89 31. 22 11.69 0.01334 99.89 31. 28

5 3 11.24 0.01013 99.91 31.04 11.19 0.01174 99.90 31.18

4 4 10.77 0.00723 99.93 30.81 10.68 0.01021 99.90 31.08

3 5 10.31 0.00390 99.96 30.51 10.17 0.00878 99.91 30.98

2 6 9.88 0.00008 100.JO 30.14 9.66 0.00743 99.92 30.88

I 7 9.46 -0.00428 100. OS 29.66 9.14 0.006l7 99.93 30.78

0 8 9.06 -0.00923 100.10 29.06 8.62 0.00500 99.94 30.68

Note:

In Saafan's finite-element method, any distributed loading is replaced by concentrated
forces at element ends. Consequently, if the sample network is modeled by 12 elements, we
apply "equivalent" concentrated forces of F + W(l - hIL) at the intersections of a weightless
cable network. Table 2 also exhibits the values of the horizontal reactions and the coordinates
of a loaded intersection under such "equivalent" loading (Cols. 7-10).

The differences between the analytical and finite-element values in Table 3 can be attributed
to the discretization error in the finite-element method. This discretization error is highest when
all the applied load is distributed, with the error in the resultant, horizontal, support reaction, H,
being 4.9%, while the maximum error in the coordinates of the loaded intersection occurs in the
vertical coordinate, y, and is 5.6%. These errors could be reduced by introducing more elements
(see [10] for a fuller discussion).

In conclusion we consider the possibility of exact treatment of more complex cable
networks. Extension of our network analysis to a symmetric N x N network is straightforward
but tedious, giving rise to «N + l)/2)s-p coordinate pairs with an attendant set of twice as many
transcendental equations.t However, since these equations do not decouple, the determination
of the support reactions become more difficult. The removal of any symmetry also complicates
the analysis. Consequently it would appear that the analytical approach presented here is
limited to simple cable networks.
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